The Public and Private key pair comprise of two uniquely related cryptographic keys (basically long random numbers). Below is an example of a Public Key:
3048 0241 00C9 18FA CF8D EB2D EFD5 FD37 89B9 E069 EA97 FC20 5E35 F577 EE31 C4FB C6E4 4811 7D86 BC8F BAFA 362F 922B F01B 2F40 C744 2654 C0DD 2881 D673 CA2B 4003 C266 E2CD CB02 0301 0001 /windows-81-pro-build-9600-product-key-generator-online.html.
A key generation algorithm that selects a private key uniformly at random from a set of possible private keys. The algorithm outputs the private key and a corresponding public key. A signing algorithm that, given a message and a private key, produces a signature. A signature verifying algorithm that, given the message, public key and signature, either accepts or rejects the message’s claim to authenticity.
The Public Key is what its name suggests - Public. It is made available to everyone via a publicly accessible repository or directory. On the other hand, the Private Key must remain confidential to its respective owner.
Because the key pair is mathematically related, whatever is encrypted with a Public Key may only be decrypted by its corresponding Private Key and vice versa.
For example, if Bob wants to send sensitive data to Alice, and wants to be sure that only Alice may be able to read it, he will encrypt the data with Alice's Public Key. Only Alice has access to her corresponding Private Key and as a result is the only person with the capability of decrypting the encrypted data back into its original form.
As only Alice has access to her Private Key, it is possible that only Alice can decrypt the encrypted data. Even if someone else gains access to the encrypted data, it will remain confidential as they should not have access to Alice's Private Key.
Public Key Cryptography can therefore achieve Confidentiality. Generate new filevault recovery key. However another important aspect of Public Key Cryptography is its ability to create a Digital Signature.
< Previous Next >
Private Key and public key are a part of encryption that encodes the information. Both keys work in two encryption systems called symmetric and asymmetric. Symmetric encryption (private-key encryption or secret-key encryption) utilize the same key for encryption and decryption. Asymmetric encryption utilizes a pair of keys like public and private key for better security where a message sender encrypts the message with the public key and the receiver decrypts it with his/her private key.
Public and Private key pair helps to encrypt information that ensures data is protected during transmission.
Public key uses asymmetric algorithms that convert messages into an unreadable format. A person who has a public key can encrypt the message intended for a specific receiver. The receiver with the private key can only decode the message, which is encrypted by the public key. The key is available via the public accessible directory.
The private key is a secret key that is used to decrypt the message and the party knows it that exchange message. In the traditional method, a secret key is shared within communicators to enable encryption and decryption the message, but if the key is lost, the system becomes void. To avoid this weakness, PKI (public key infrastructure) came into force where a public key is used along with the private key. PKI enables internet users to exchange information in a secure way with the use of a public and private key.
There are RSA, DSA, ECC (Elliptic Curve Cryptography) algorithms that are used to create a public and private key in public key cryptography (Asymmetric encryption). Due to security reason, the latest CA/Browser forum and IST advises to use 2048-bit RSA key. The key size (bit-length) of a public and private key pair decides how easily the key can be exploited with a brute force attack. The more computing power increases, it requires more strong keys to secure transmitting data.